

Thermochimica Acta 249 (1995) 13-20

thermochimica acta

The phase diagrams of M_2X-SiX , (M is Cu, Ag; X is S, Se)

Mahadevan Venkatraman ', Roger Blachnik *, Andreas Schlieper

Anorganische Chemie, Institut fiir Chemie, Uniuersitiit Osnabriick, P.B. 4469, Osnabriick, D-49069, Germany

Received 1 June 1994; accepted 8 June 1994

Abstract

The phase diagrams of Cu_2S-SiS_2 , Ag_2S-SiS_2 and $Ag_2Se-SiSe_2$ were investigated by DTA and X-ray methods. The system Cu_2S-SiS_2 contains two compounds: Cu_2SiS_3 and Cu_8SiS_6 . The compound $Cu₆Si₂S₇$ does not exist. The phase diagram of Ag₂S-SiS₂ is characterized by the presence of two ternary compounds: Ag_8Sis_6 and $Ag_{10}Si_3S_{11}$. The $Ag_2Se-SiSe_2$ system contains only Ag_8Sis_{6} , which forms a eutectic on either side. The stability range and the X-ray diffraction data of the compounds are presented.

Keywords: Chalcogenide; DTA; Eutectic; Phase diagram; XRD

1. Introduction

Sulphides and selenides containing group Ib and IVb elements have been studied for a long time, but attention has been focused mainly on the crystallographic data and physical properties of these compounds as they possess interesting semiconducting properties. However, a knowledge of the phase diagram is essential in order to define the optimum conditions for preparation of the crystals and to understand the stability regions of the compounds. A survey of the literature has revealed that information on the phase equilibra of chalcogen systems containing Ib and IVb

0040-6031/95/\$09.50 (Q 1995 - Elsevier Science B.V. All rights reserved SSDI 0040-6031(94)01932-7

^{*} Corresponding author.

^{&#}x27; On leave from Naval Chemical and Metallurgical Laboratory, Naval Dockyard, Tiger Gate, Bombay-400 023, India.

elements is more scarce. As part of a larger effort to synthesize new compounds for electro-optical applications we have chosen to establish the phase diagrams of the $Cu-Si-S(Se)$ and $Ag-Si-S(Se)$ systems and to see if any new compounds exist. Only the pseudo-binary sections along the cross sections Cu_5S-SiS_2 , Ag_2S-SiS_2 and $Ag_2Se-SiSe_2$ were studied because the maximum number of compounds is to be found in these sections.

2. **Experimental**

The binary sulphides and selenides of Cu and Ag (Cu₂S, Ag₂S, Ag₂Se and SiSe₂) which were the starting components for the preparation of alloys were prepared by mixing stoichiometric amounts of pure elements (Cu, Preussag 99.999%, Ag, 99.99% Degussa; Si, H.C. Starck 99.999%; Se, Retorte 99.999% and S, Merck 99.99%) in evacuated sealed quartz ampoules. The samples were heated slowly until above the melting point of the compounds, kept at that temperature for one week, and slowly cooled. $SiS₂$ (99.5% purity) was obtained from ABCR.

Differential thermal analysis was carried out using a DTA apparatus constructed in this laboratory [8] and with Du Pont 900 and Perkin-Elmer DSC-2 instruments at a heating/cooling rate of 10 K min^{-1} , using silicon as a reference.

3. Results

3.1. *Cu,S ~ SiS, sys tern*

Two ternary compounds $Cu₂SiS₃$ [1-4] and $Cu₈SiS₆$ [4-7] have been well established along the pseudo-binary section Cu_2S-SiS_2 . Cu_8SiS_6 belongs to the well-known argyrodite family. In addition to these two compounds, Boivin et al. [4] and Thomas and Tridot [8] have reported two additional phases, $Cu₄SiS₄$ (at 60 mol% Cu₂S) and Cu₆Si₂S₇ (at 66.6 mol% Cu₂S). Although a phase diagram of $Cu₂S-SiS₂$ was included, this was not entirely supported by their experimental results.

Cambi and Monselise [5] gave the earliest information on the phase diagram, only from 50 to 100 mol% $Cu₂S$, based on cursory thermal studies of samples with masses between 25 and 50 g. They found that $Cu₈SiS₆$ melted congruently at 1195°C, formed a eutectic with Cu₂S at 1062 ± 5 °C and another eutectic on the SiS_2 -rich side at 950°C. They did not detect the existence of Cu₂SiS₃.

We have reinvestigated the $Cu₂S-SiS₂$ system by DTA and X-ray methods. The phase diagram of the system is presented in Fig. 1. The existence of two ternary compounds, Cu_2SiS_3 and Cu_8SiS_6 is confirmed. Cu_8SiS_6 melts congruently at $1200 \pm 5^{\circ}$ C and Cu₂SiS₃ decomposes by a peritectic reaction into liquid and Cu₈SiS₆ at 900° C. Two eutectic reactions occur, one on the SiS₂-rich side and the other on the Cu₂S-rich side; $L \rightleftharpoons SiS_2 + Cu_2SiS_3$ at $840 \pm 10^{\circ}$ C and ≈ 40 mol% Cu₂S, and $L \rightleftharpoons Cu_8SiS_6 + Cu_2S$ at 1065 \pm 5°C and \approx 95 mol% Cu₂S.

Fig. 1. Phase diagram of the Cu,S-SiS, system.

The region between 50 and 80 mol% $Cu₂S$ is complex as it reportedly contains many compounds and several invariant reactions. To clarify this, we made additional DTA and X-ray studies in this region using mixtures of pure $Cu₂SiS₃$ and $Cu₈SiS₆$. The stability range of the compounds and the invariant reaction temperatures could be determined. Room temperature X-ray patterns of mixtures of $Cu₂SiS₃$ and $Cu₈SiS₆$ annealed at 500, 600 and 700°C in the composition range 50-68 mol% Cu_2S showed two-phase mixtures of Cu_2SiS_3 and Cu_8SiS_6 , but between 68 and 80 mol% Cu₂S, revealed only a single compound, $Cu₈SiS₆$. Furthermore, samples between 68 and 80 mol% $Cu₂S$ did not exhibit any thermal effect until the liquidus, except due to the phase transition of argyrodite at lower temperatures. We therefore concluded that $Cu₈Si₆$ has a homogeneity range from 68 to 80 mol% Cu_2S between about 500 and 900°C. Samples from 50–68 mol% Cu₂S, however, showed two clear thermal effects, one at 900° C and another at 770 $^{\circ}$ C. The thermal effect at 900 $^{\circ}$ C could be explained from the peritectic decomposition of $Cu₂SiS₃$, but the reason for the effect at 700 $^{\circ}$ C is not clear.

Regarding the existence of two other compounds in this region, namely $Cu₄SiS₄$ at 66.6 mol% Cu₂S and Cu₆Si₂S₇ at 60 mol% Cu₂S, we found no evidence that the latter exists. From the X-ray data given in the literature, it can be concluded that the composition of this compound is $Cu₅Si₂S₇$; the structure was determined by Dogguy et al. [9]. However, X-ray patterns of alloys at 60 mol% $Cu₂S$ (corresponding to $Cu₄SiS₄$) annealed at temperatures between 830 and 850°C always contained lines in addition to the lines due to $Cu₂SiS₃$, and $Cu₈SiS₆$. In samples which were annealed below 830°C, these extra lines vanished and only $Cu₂SiS₃$ and $Cu₈SiS₃$ lines were present. High temperature X-ray experiments on samples in the composition range 58-66 mol% Cu,S did not reveal the existence of a compound at 66 mol% Cu₂S. Therefore Cu₄SiS₄ might exist over a very narrow temperature range of about 20°C around 850°C. Careful single-crystal studies at elevated temperatures are needed to establish its presence conclusively.

3.2. *Crystal structures*

Contrary to Hahn et al. [2] and Rivet et al. [1], we observed that $Cu₂SiS₃$ does not undergo any structural transformation. Neither high nor room temperature X-ray studies of annealed and quenched samples showed any evidence to that effect. Hahn and co-workers did not report the powder diffraction data, but analysis of Rivet's X-ray data revealed that his high temperature modification is in fact a mixture of $Cu₂SiS₃$ and argyrodite. Our powder diffraction data of $Cu₂SiS₃$ are in agreement with those of Rivet et al. for the low temperature phase, but yielded different lattice parameters. According to our results, $Cu₂SiS₃$ is monoclinic with the lattice constants $a = 633.3$, $b = 1122.5$ and $c = 627.5$ pm, and $\beta = 107.32^{\circ}$. The X-ray data are given in Table 1. The lattice parameters of $Cu₂SiS₃$ at room

$d_{\text{cal}}/$ pm	$d_{\rm obs}/$ pm	hkl	$d_{\rm cal}$ pm	$d_{\rm obs}/$ pm.	hkl	
560.4	559.9	020	231.5	231.6	222	
531.7	530.5	110	222.1	222.2	221	
463.0	462.3	111	207.8	207.9	241	
409.1	409.4	021	193.7	193.8	312	
353.8	354.0	111	188.0	187.9	023	
299.4	299.2	002	186.4	186.3	202	
296.6	296.7	112	184.8	184.9	223	
271.0	271.2	221	164.1	164.2	152	
265.8	265.8	220	154.3	154.3	333	
235.5	235.3	112				

Table 1 X-ray powder data of $Cu₂SiS₃$

temperature reported in the literature are: $a = 529.0$, $c = 507.8$ pm, tetragonal symmetry [1], and $a = 1151$, $b = 534$, $c = 816$ pm and $\beta = 98.95^{\circ}$, monoclinic [2]. The lattice constants $a = 699.8$, $b = 690.35$, $c = 976.82$ pm were obtained for orthorhombic $Cu₈SiS₆$, compared with the parameters $a = 699.3$, $b = 690.0$, $c = 977.2$ pm, Pmn2, [7], based on single-crystal studies.

3.3. Ag_2S-SiS_2 system

The partial phase diagram of Ag_2S-SiS_2 has been determined by Cambi and Elli [10] and Gorochov and Flahaut [11]. The existence of a ternary compound, Ag_8SiS_6 , in this cross section has been clearly established $[4,6,10-13]$. Gorochov $[13]$ reported that this compound melted congruently at 940° C and formed a eutectic with Ag₂S at 735 \degree C and 90 mol% Ag₂S, whereas Cambi and Elli [10] found a value of 959 \degree C for the melting point and 759°C for the eutectic between Ag_2S and Ag_8SiS_6 . Besides $Ag₈SiS₆$, Mandt and Krebs [14] reported the existence of a second ternary compound, $Ag_{10}Si_3S_{11}$. They prepared single crystals of this compound by reacting $Ag_2S + Si + S$ in evacuated quartz ampoules and made a detailed crystal structure analysis. The compound is triclinic (P $\overline{1}$) with the lattice constants: $a = 1241.4$, *b* = 1347.6, *c* = 645.9 pm, $\alpha = 78.92^{\circ}$, $\beta = 77.61^{\circ}$, $\gamma = 68.71^{\circ}$.

Compounds with lower Ag_2S content claimed by other investigators, such as $Ag_6Si_2S_7$ [4,10,12] and Ag_2SiS_3 [4], were not found by Mandt and Krebs [14]. At the corresponding compositions they observed that the samples were heterogeneous mixtures of Ag_8SiS_6 , $Ag_{10}Si_3S_{11}$, SiS_2 and small amounts of an unidentified phase. Gorochov [131 also studied this system in somewhat more detail, but found no evidence for Ag_2SiS_3 or $Ag_6Si_2S_7$ phases either. We constructed the phase diagram based on high and low temperature X-ray and DTA results. The diagram is shown in Fig. 2. The Ag₂S-rich side of the diagram between Ag_8SiS_6 and Ag_2S is in agreement with the literature data. The phase Ag_8SiS_6 melts congruently at 970°C and forms a eutectic with Ag₂S at 770°C and \approx 93 mol% Ag₂S. The liquidus on the SiS_2 -rich side was difficult to determine owing to the high vapour pressure of SiS_2 .

In agreement with Mandt and Krebs [14], we could not detect Ag_2SiS_3 or Ag_2SiS_7 . Comparison of our powder diffraction data of samples quenched from 400 and 600°C at the stoichiometric compositions corresponding to these compounds, revealed that they were a mixture of Ag_8SiS_6 , $Ag_{10}Si_3S_{11}$ and an unidentified phase. The lines from the unidentified phase, however, were present in all the samples between 5 and 60 mol% Ag₂S. Samples between 55 and 80 mol% Ag₂S exhibited a clear thermal arrest at 710°C. This could be interpreted from the peritectic decomposition of $Ag_{10}Si_3S_{11}$ into liquid and Ag_8SiS_6 .

3.4. *Ag,Se -SiSe, system*

Gorochov [13] determined the pseudo-binary $Ag_2Se-SiSe_2$ system on the Ag_2Se rich side only. He found the existence of the compound Ag_8SiSe_6 , which melted congruently at 930°C and formed a eutectic with Ag₂Se at 850°C and 94 mol% Ag₂Se. Ag₈SiSe₆ belongs to the family of argyrodites [13,15]. The stable form of

Fig. 2. Phase diagram of the Ag_2S-SiS_2 system.

 $Ag₈SiSe₆$ at room temperature is face-centred cubic with the lattice constant $a = 1086$ pm and space group P4,32 [6].

The complete quasi-binary section of $Ag_2Se-SiSe_2$ determined from XRD and DTA is given in Fig. 3. Ag_8SiSe_6 melts congruently at $985 \pm 5^{\circ}C$ and forms a eutectic on either side with SiSe₂ and Ag₂Se at 685 \pm 10°C and \approx 45 mol% Ag₂Se, and 800 \pm 5°C and \approx 95 mol% Ag₂Se, respectively. The high-temperature X-ray pattern of 50 mol% Ag₂Se annealed at 600° C, and room temperature X-ray results of samples between 0 and 80 mol% Ag₂Se, showed only lines due to Ag_8SiSe_6 and Sis_{2} . No evidence for the existence of compounds besides $Ag_8Sis_{\epsilon_6}$ was found. This was further confirmed by DSC measurements.

Ag,SiSe, undergoes several crystallographic transformations at 132, 70, 40 and 10°C [121. We could obtain well-defined thermal arrests for alloys between 80 and 100 mol% Ag_2 -Se at 132°C. The other phase transition temperatures shown in the phase diagram are taken from the literature.

Fig. 3. Phase diagram of the $Ag_2Se-SiSe_2$ system.

Acknowledgements

We thank the Alexander von Humboldt Foundation and the Fonds der Deutschen Chemie for their support.

References

- [1] J. Rivet, J. Flahaut and P. Laruelle, C.R. Acad. Sci., 257 (1963) 161-164.
- [2] H. Hahn, W. Klingen, P. Ness and H. Schulze, Naturwissenschaften. 53 (1966) 18.
- [3] L.K. Samanta, Phys. Status Solidi A, 100 (1987) K93- K97
- [4] J.C. Boivin, D. Thomas and G. Tridot, C.R. Acad. Sci. Ser. C, 264 (1967) 1286- 1289
- [5] L. Cambi and G.G. Monselise, Gazz. Chim. Ital., 66 (1936) 696-700.
- [6] H. Hahn, H. Schulze and L. Sechser, Naturwissenschaften. 52 (1965) 451.
- [7] M. Dogguy, Mater. Chem. Phys., 9 (1983) 405-412.
- [8] D. Thomas and G. Tridot, C.R. Acad. Sci. Paris Ser. C, 264 (1967) 1385-1388.
- [9] M. Dogguy, S. Jaulmes, P. Larnelle and J. Rivet, Acta Crystallogr, Sect. B, 38 (1982) 2014-2016
- [IO] L. Cambi and M. Elli, Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend., 30 (1961) I l-15.
- [11] O. Gorochov, J. Flahaut, C.R. Acad. Sci. Ser. C, 264 (1967) 2153-2155.
- [12] G.G. Monselise, Gazz. Chim. Ital., 67 (1937) 748-750.
- [13] O. Gorochov, Bull. Soc. Chim. Fr., 6 (1968) 2263-2275.
- [141 J. Mandt and B. Krebs, Z. Anorg. Allg. Chem., 420 (1976) 31 39.
- [15] J. Unterrichter and K.J. Range, Z. Naturforsch., 33 (1978) 866-872.